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ABSTRACT

In this study, we engineered mesenchymal stem cells (MSCs) to over-express basic fibroblast

growth factor (bFGF) and evaluated its effects on fracture healing. Adipose-derived mouse MSCs

were transduced to express bFGF and green fluorescence protein (ADSC
bFGF

-GFP). Closed-femoral

fractures were performed with osterix-mCherry reporter mice of both sexes. The mice received 3

3 10
5

ADSCs transfected with control vector or bFGF via intramuscular injection within or around

the fracture sites. Mice were euthanized at days 7, 14, and 35 to monitor MSC engraftment, osteo-

genic differentiation, callus formation, and bone strength. Compared to ADSC culture alone,

ADSC
bFGF

increased bFGF expression and higher levels of bFGF and vascular endothelial growth fac-

tor (VEGF) in the culture supernatant for up to 14 days. ADSC
bFGF

treatment increased GFP-labeled

MSCs at the fracture gaps and these cells were incorporated into the newly formed callus.

quantitative reverse transcription polymerase chain reaction (qRT-PCR) from the callus revealed a

2- to 12-fold increase in the expression of genes associated with nervous system regeneration,

angiogenesis, and matrix formation. Compared to the control, ADSC
bFGF

treatment increased VEGF

expression at the periosteal region of the callus, remodeling of collagen into mineralized callus and

bone strength. In summary, MSC
bFGF

accelerated fracture healing by increasing the production of

growth factors that stimulated angiogenesis and differentiation of MSCs to osteoblasts that formed

new bone and accelerated fracture repair. This novel treatment may reduce the time required for

fracture healing. STEM CELLS TRANSLATIONAL MEDICINE 2017;6:1880–1893

SIGNIFICANCE STATEMENT

Mesenchymal stem cells engineered to express basic fibroblast growth factor may provide a
cell-based treatment for fracture repair that provides an environment rich in stem cells, growth
factors, and bone matrix proteins over a short time, thereby promoting bone regeneration.

INTRODUCTION

Traumatic fractures often require hospitalization,
surgery, frequent physician visits, and lost time
from work. By 2050, the worldwide incidence of
hip fractures is projected to increase by 310% in
men and 240% in women. The combined lifetime
risk for hip, forearm, and vertebral fractures is
about 40%, which is equivalent to the risk for car-
diovascular disease (quote from International
Osteoporosis Foundation). The one-year mortality
rate for hip fracture ranges from 12% to 37% and
approximately half of patients are unable to
regain their ability to live independently. More
than 1,200 hip fracture surgeries are performed in
the Department of Veteran Affairs hospitals each
year and very few veterans (<1%) hospitalized for
hip fractures were discharged for home health

care [1]. The morbidity associated with hip frac-
tures is high and an effective treatment to acceler-
ate fracture healing is still lacking.

Although there are a handful of methods to
chemically enhance the fracture healing process,
they have serious limitations. The efficacy of para-
thyroid hormone (PTH) for fracture healing has
been evaluated in rodents [2–4] and recombinant
human PTH 1-34 (teriparatide) has been used off-
label in clinical practice [5–7]. However, teripara-
tide has not been approved by the FDA for this
indication. Infusions with recombinant human
bone morphogenetic proteins (rhBMP) 2 and 7
have been used to treat open tibia shaft fractures
and long bone non-unions, but the efficacy of
these treatments remains controversial [8–14].
Moreover, rhBMPs have been associated with sev-
eral side effects, such as inflammation, ectopic
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bone formation, tumorigenesis, and the development of antibod-
ies against rhBMPs [11, 15–18]. Thus, there is still an unmet medi-
cal need to treat fractures and shorten the time for bone healing.

There are many growth factors that are secreted in response
to a fracture. Among these growth factors, RNA and protein levels
of basic fibroblast growth factor (bFGF) are significantly elevated
in the callus region in rodent fracture models compared to control
animals [19–23]. Mice overexpressing bFGF had higher levels of
osteoblast maturation and vascular invasion during the early frac-
ture repair period [24]. Previous studies have demonstrated that
short-term bFGF injection induces profound de novo bone forma-
tion [25, 26]. bFGF stimulates blood vessel growth and has syner-
gistic effects with vascular endothelial growth factor (VEGF) or
platelet-derived growth factor (PDGF), which are important angio-
genic factors for wound healing [27]. Like BMPs, bFGF can be
directly injected or loaded in scaffolds for fracture healing [28–31].
Although injections with bFGF typically increase early osteoproge-
nitor cell proliferation, stimulate bone formation, and induce
larger callus formation compared with controls, it is not known if
the treatment improves bone mechanical strength [22, 32–34].

Prolonged exposure to protein mitogens, including bFGF, is
associated with increased risk for cancer [35–37]. Moreover, sys-
temic bFGF injection was associated with severe anemia and shifts
in the fate of progenitor cells toward the osteoblast lineage at the
expense of the hematopoietic lineage, thereby limiting the sys-
temic application of this growth factor [38–40]. Transplantation of
mesenchymal stromal cells (MSCs) was found to be more likely to
enhance bone and cartilage regeneration when these cells were
engineered to express growth factors such as insulin growth
factor-1 (IGF-1), bone morphogenetic proteins (BMPs), or VEGF
[41–43]. These findings support the use of MSCs as “factories” to
produce a sustained local release of low levels of growth factors
over a controlled period for injury repair. We hypothesize that the
combination of gene and cell therapies would accelerate fracture
repair through a combination of both autocrine and paracrine
mechanisms, and may be more effective than individual growth
factors given systemically.

MATERIALS AND METHODS

Mice and Treatments

Osterix-mCherry (Osx-mCherry) reporter mice were obtained via
MTA agreement from Dr. Peter Maye at the University of Connect-
icut Health Center. Both male and female mice were used as host
mice for fractures. Collagen1-green fluorescent protein (GFP) mice
(B6. Cg-Tg(Col1a*2.3-GFP)1Rowe/J, Stock 013134), Collagen2-
CreERT mice (FVB-Tg(Col2a1-cre-ERT) KA3Smac/J, Stock 006774),
and Ai9 reporter mice (B6; 129S6-Gt(ROSA)26Sortm1(Notch1)
Dam/J, Stock 007905) were purchased from Jackson Laboratories.
Closed transverse diaphysis fractures of the right femur were gen-
erated in 2-month-old mice using a previously described method
with some modification [44, 45]. Briefly, a 0.38-mm-diameter
stainless-steel pin was inserted into the medullary canal. Fractures
were created at the mid-femur using a drop-weight blunt guillo-
tine device. Because MSCs given intravenously are likely to be
trapped in the lung and very few make it to the systemic circula-
tion, we used intramuscular (IM) injection to bypass the risk of
lung embolism. ADSCs or ADSCsbFGF were given at 3 3 105, IM
adjacent to the fracture site, at of the same day as fracture opera-
tion. Groups of mice from both sexes were euthanized at days 7,

14, 21, and 35 post-fracture. Mice in day 7 group received luciferin
injection at 200 mg/mouse (PerkinElmer, Billerica, MA, http://
www.perkinelmer.com/). Calcein injection (10 mg/kg) was given
to mice in days 21 and 35 groups at -6 and -1 days prior to eutha-
nization. Mice were housed in the animal facility under closely
controlled environmental conditions (12-hour light/dark cycle,
room temperature 228C), and fed ad libitum (food and water). The
Institutional Animal Care and Use Committee of the University of
California Davis approved the animal protocols for surgery, pain
relief, and treatments.

MSC Isolation and Culture

Adipose tissue was collected from the abdominal and inguinal
regions from wild type (WT) mice, incubated with 0.1% type I
collagenase solution in a 195-rpm shaker at 378C for 90 minutes,
centrifuged at 300g for 5 minutes, shaken vigorously for 15 sec-
onds and centrifuged at 300g for an additional 5 minutes at
room temperature. The dark cell pellets were collected, sus-
pended in phosphate buffer saline (PBS) containing 10% bovine
serum albumin (BSA) and centrifuged at 300g for 5 minutes. The
cell pellets were then suspended in cold 13 Magcellect plus via
a negative selection principle (CD45-, TER119-; EasySep Mouse
Mesenchymal Stem/Progenitor Cell Enrichment Kit, Stem Cell
Technologies, Vancouver, Canada, https://www.stemcell.com/).
The cells were maintained in Mesencult mouse MSC prolifera-
tion medium (Stem Cell Technologies Inc., Vancouver, BC, Can-
ada, https://www.stemcell.com/) and used at passage 2. These
cells were 99.99% CD45 negative and positive for CD105
(>70%), CD29 (>99%) and Sca1 (>98%) [46].

bFGF Vectors and MSC Transduction

MSCs were cultured to 70% confluence and subsequently trans-
duced with bFGF (MNDU3-FGF2-LUC-PGK-EGFP-WPRE) or control
vector. The MSCs were transduced with 20 lg/ml of protamine
sulfate. The volume of lentivirus used for each transduction was
determined by titration as the required volume to generate
approximately 50% GFP-positive MSCs.

MicroCT Scan for Evaluation of Callus

The protocol was designed to reflect variations in callus mineraliza-
tion during fracture [47]. Briefly, the right distal femurs were
scanned with mCT (VivaCT 40, Scanco Medical AG, Bassersdorf, Swit-
zerland, http://www.scanco.ch) at 55 KeVand 145 mA at an isotropic
resolution of 10.5 mm in all three dimensions with an integration
time of 350 ms. The entire callus was scanned. The outer boundary
of the callus was manually defined through contouring and meas-
ured at a fixed length of 4 mm covering the full length of the callus.
Gaussian filtering with Sigma 1.2 and Support 2 was used to mini-
mize image noise. We used different thresholds to separate new
bone and calcified cartilage (250–350) from the well-mineralized
cortical bone (350–800) or under-mineralized tissue (<250). The
same settings and thresholds were used for all samples.

Cell Counts and Bone Histomorphometry

Mouse samples were embedded in optimum cutting temperature
(OCT) for cryosections. Bone histomorphometry was performed
on the entire callus, including measurements of total single-
labeled and doubled-labeled bone surfaces (Bioquant Osteo 2015,
Bioquant, Nashville, TN, http://bioquant.com/). Mineralized sur-
face (MS/BS), mineral apposition rate (MAR), and bone formation
rate (BFR/BS) were calculated following recommendations of the
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American Society for Bone and Mineral Research [48]. Cell counts
were performed using Keyence cell count software (Keyence BZ-
X700 all-in-one fluorescence microscope, Elmwood Park, NJ,
http://www.keyence.com),

Immunohistochemistry

Immunohistochemically staining was performed on frozen callus
sections using anti-mouse rabbit aSMA VEGF and PDGF-BB anti-
bodies (1:200 to 1:50 dilution, respectively, Abcam, Cambridge,
MA, http://www.abcam.com/). Alexa-Fluor 388 0r 594-conjugated
secondary antibody were used (1:1,000, Vector laboratories, INC,
Burlingame, CA). 40,6-diamidino-2-phenylindole (DAPI) solution
(1:5,000, Vector laboratories, INC, Burlingame, CA, https://vector-
labs.com) was applied for 5 minutes for nuclear staining.

Bone Strength Measurement

Each femur was loaded to failure along its long axis using an MTS
831 electro-servo-hydraulic testing system (MTS Systems Corp.,
Eden Prairie, MN, http://www.mts.com) at a displacement rate of
0.01 mm/second with a 90 N load cell. Sample loads and displace-
ments were continuously recorded throughout each test. Maxi-
mum load was determined from the load-displacement curve and
the work to fracture was calculated from the area under the load-
displacement curve [39, 49, 50].

Statistical Methods

All data are presented as mean6 SD. Null hypothesis testing was
performed at a significance level of 0.05. Our primary endpoints

for these studies were callus volume and strength. At each time
point, we used the Kruskal–Wallis test to compare the population
mean of the outcome variable of interest among all groups. If the
overall test was statistically significant, we made pair-wise com-
parisons to determine which groups were significantly different
with the Wilcoxon ranked-sum test. Interactions between sex and
treatment within each outcome measurement were evaluated by
two-way analysis of variance (ANOVA) (sex, treatment, and their
interaction) [46, 51].

RESULTS

ADSC
bFGF

Exhibited Higher Intracellular and

Extracellular bFGF and VEGF Levels

At day 3, bFGF level was increased by twofold increase in
ADSCbFGF superman at days 3–7 as compared to control ADSC
superannuant. VEGF levels were increased in the culture superna-
tant starting from day 7 in both the ADSCbFGF and control ADSCs,
with higher levels being observed in the ADSCbFGF group.
ADSCbFGF had higher intracellular bFGF levels starting from days 3
to days 14, but we did not detect any difference in intracellular
VEGF (Fig. 1)

Engraftment of ADSC
bFGF

in the Callus

Osterix is a marker of osteoprogenitor cells that eventually differ-
entiate into chondrocytes and osteoblasts involved in both endo-
chondral and intramembranous bone formation during fracture
healing [52–54].We used ADSCs from Osx-mCherry mice as donor

Figure 1. bFGF levels in MSCs and culture supernatant. Adipose-derived mouse MSCs were transduced with bFGF or control vectors and
grown to 60% confluence at P0. bFGF and VEGF levels were measured by enzyme-linked immunosorbent assay (ELISA) at days 3, 7, 10, and
14 post-bFGF transduction in both cell lysates and culture medium. Abbreviations: bFGF, basic fibroblast growth factor; MSCs, mesenchymal
stromal cells; VEGF, vascular endothelial growth factor.
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cells for transplantation. To visualize the engraftment of ADSCs in
bone, femurs of 2-month-old Osx-mCherry mice were fractured.
The mice then received 3 3 105 ADSCs obtained from male WT
mice transduced with control dual GFP–Luciferase (Luc) or GFP-
Luc-bFGF vector. These cells were injected IM adjacent to fracture
sites. At day 14 post- fracture and cell transplantation, using anti-
body again luciferase, we observed a small number of Luc1 trans-
planted cells within the fracture gaps in the ADSC group
(1936 21) and some Luc1 cells at the periphery of the callus in
the ADSCbFGF group (3776 212) (Fig. 2A, white arrows, green-
stained cells). At day 21, we identified the transplanted by GFP sig-
nals. Some of the GFP1 transplanted cells were sparsely detected
in the bone marrow in the ADSC group (1966 73) (Fig. 2B),
whereas some GFP1 cells were found within bone marrow or
were embedded within the callus in the ADSCbFGF group
(3306 43) (Fig. 2C).We did not detect ossification in muscle from
microCT scans or in frozen sections. Transplanted cells were not

detected in other tissues, as measured by quantitative real time
polymerase chain reaction (qPCR) (data on file). These data sug-
gest that some ADSCsbFGF migrated to fracture gaps and were
incorporated into the callus while others remained in bone mar-
row for at least 21 days.

Paracrine Effects of ADSC
bFGF

Despite the detection of only a few ADSCsbFGF adjacent to the cal-
lus, endogenous osteogenesis as detected by osterix expression
(red 1 cells) was significantly higher in ADSCbFGF-treated mice as
compared to ADSC-treated mice (osterix1 red cells 12.6%6 1.0%
vs. 5.86 1.7% in females and 10.6%6 1.9% vs. 6.0%6 1.8% in
males) (Fig. 3A).

Because periosteal bone apposition is critical to connect frac-
ture gaps and stabilize fractures, we were interested in identifying
potential signals and/or ADSCbFGF-targeted cells at the periosteal
surface following ADSCbFGF transplantation. Consistent with

Figure 2. Engraftment of transplanted MSCs in fracture callus at days 14 and 21 post-fracture and cell transplantations. Closed-femoral frac-
tures were performed in the right femurs of 2-month-old female osterix-mcherry mice. These mice received 3 3 105 ADSCs transfected with
control vector or ADSCbFGF via IM injection adjacent to fracture sites. (A): Mice were sacrificed at day 14 post-fracture. They were injected
with 100 ll of 20mg/mL D-Luciferin Firefly 10 minutes prior to sacrifice. Frozen sections of callus were stained with anti-luciferase antibody
followed by Alexa-Fluo 488-conjugated secondary antibody. Scale bar 50 mm. Mice were sacrificed at day 21. Some transplanted cells (in
green) were retained in the bone marrow space within the callus (white arrows) in ADSC (B) or ADSCbFGF (C) treated groups. Scale bar 100
mm. Abbreviations: ADSC, Adipose-derived mouse MSCs; DAPI, 40,6-diamidino-2-phenylindole; GFP, green fluorescent protein; Luc, luciferase.
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previous reports [55, 56], we observed that some aSMA1 cells
were present at the periosteum and periosteal surface of the cal-
lus and these cells were increased in the ADSCbFGF -treated group
(Fig. 3B). Importantly, we observed a dramatic increase in VEGF
expression, particularly at the outer periosteal region of the callus
following ADSCbFGF treatment, suggesting endogenous activation
of angiogenesis (Fig. 3C, red arrows). PDGF-BB expression was
also increased in the callus surrounding sinusoid-like regions or on
the periosteal bone surface (Fig. 3D, green arrows), supporting a
paracrine activation of cells expressing these growth factors fol-
lowing ADSCbFGF treatment. Additionally, ADSCbFGF induced 2–12-
fold greater expression of Acta2 (aSMA), Actc1 (a–CMA), Hbegf,
Gdf2, and Itgn6, as measured q-PCR on callus tissue (data on file).

ADSC
bFGF

Increased Callus Mineralization Through

Endochondral Bone Formation

We next evaluated how ADSCbFGF treatment affected callus bone
formation and bone structure at day 21. In the female recipients,
ADSCbFGF treatment induced 80% higher mineralizing surface and

350% higher bone formation rate than the PBS or ADSC-treated
groups (Fig. 4A). In the male recipients, ADSCbFGF treatment
induced 500% higher mineralizing surface and 750% higher
bone formation rate than the PBS or ADSC-treated groups (Fig.
4B). In female recipients, ADSCbFGF treatment induced 56%
higher total callus volume and 40% higher callus bone volume
from days 21 to 35 post-fracture and treatment (Fig. 5A–5C).
These morphometric changes were associated with 80% higher
maximum load from days 21 and sustained at days 35 post-
fracture and treatment (Fig. 5D). In male recipients, ADSCbFGF

treatment did not affect total callus formation in comparison
to PBS or ADSC-treated groups but increase callus bone volume
by 13% and 23%, respectively, compared to the PBS or ADSC-
treated group at days 21 and 35 post-fracture and treatment
(Fig. 5E–5G). Higher mineral apposition was observed at the
periosteum connecting to the fracture gaps as well as at endo-
cortical surfaces of the pre-existing cortex that bridged the
fracture gaps (black arrow heads illustrate higher mineral den-
sity color coded red) (Fig. 5F). Both maximum load and work-

Figure 3. Paracrine signals that contributed to callus formation. Mice were treated as described in Figure 2 and sacrificed at day 14. Photos
were taken from central regions of the callus (small insert to the right). Femurs were fractured in osterix-mcherry WT mice: (A): low magnifi-
cation showing the fractured callus. Scale bar 100 mm. (B): Callus were stained with anti-aSMA conjugated to FITC (green arrows). Scale bar
50 mm. (C): Fractures in osterix-mcherry WT mice were stained with anti-VEGF and Alexa-Fluo 594-conjugated secondary antibody. (D): Frac-
tures in osterix-mcherry WT mice were stained with anti-PDGF-BB and Alexa-Fluo 488-conjugated secondary antibody. Abbreviations:
aSMA1, smooth muscle a–actin; ADSC, adipose-derived mouse MSCs; bFGF, basic fibroblast growth factor; C, callus; PDGF, platelet-derived
growth factor PDGF; Ps, periosteal surface. Scale bar 50 mm.
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to-failure was significantly higher than PBS or ADSC-treated
groups at days 35 post-fracture and treatment (Fig. 5H).

To determine whether bone formation occurred by endochon-
dral or intramembranous bone formation mechanisms, we first
crossed Col2-CreERT with Col1-GFP mice to make Col2-iCre/tdTo-
mato mice. Then the Col2-Cre1 mice were crossed to Col12.3-
GFP. Similarly, Acan-iCre-tdTomato x Col1-GFP (data on file) were
generated so that we could quantitatively measure the temporal
and spatial colocalization of chondrogenic cells and osteoblastic
differentiation by a short course of low dose tamoxifen treatment

(3 mg/kg, i.p. 3 2 days) to activate CreERT [57]. If bone formation
was endochondral in nature, the Col21 cells would populate or
differentiate into osteoblasts during endochondral bone formation
and become yellow.We found that most of the newly formed cal-
lus consisted of Col11 cells (green cells, green arrow heads) that
arose from the periosteal surface via intramembranous bone for-
mation (Fig. 6). Col21 cells (red cells, red arrows) were
expressed in the growth plate and articular cartilage. These
Col21 cells seemed to be activated at the cortex, especially in
the ADSCbFGF-treated group. Very few Col21 cells directly

Figure 4. Bone formation at day 21. Mice were treated as described in Figure 2 and sacrificed at day 21. Calcein (10 mg/kg) was injected
s.c. in mice at 9 and 2 days before sacrifice. Endogenous osterix1 cells are in red and green is calcein labeling, corresponding to mineral dep-
osition. ADSCbFGF increased the green-labeled mineralized surface and bone formation rate in both the female (A) and male (B) mice. Scale
bar 100 mm. *, Significant difference between indicated group by Wilcoxon ranked-sum comparison test. Abbreviations: ADSC, adipose-
derived mouse MSCs; bFGF, basic fibroblast growth factor; DAPI, 40,6-diamidino-2-phenylindole; PBS, phosphate buffered saline.
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colocalized with Col11 osteoblasts (yellow cells). Taken together,
ADSCbFGF treatment greatly activated Col21 cell populations
from the preexisting cortex, and these cells bridged the callus
and participated in intramembrane bone formation (Fig. 6).

DISCUSSION

In the present study, we found that MSCs engineered to overex-
press bFGF accelerated the fracture healing process through sev-
eral mechanisms. First, some transplanted ADSCbFGF directly
migrated to the fracture site and engrafted in the callus or within
bone marrow. Although only approximately 1/1,000 of the

transplanted ADSCsbFGF were engrafted in the fracture callus, we

observed a substantial activation of endogenous angiogenesis and

osteogenesis following ADSCbFGF transplantation, suggesting that

these cells exerted most of their effects by a paracrine mechanism.

Moreover, ADSCbFGF treatment induced a rapid conversion of soft

callus to mineralized tissue resulting in higher bone mineralization

and shortening the time required to regain bone strength.
The activation and migration of endogenous MSCs is critical

for fracture healing in that these cells differentiate into osteo-
blasts and chondrocytes. The initial deposition of cartilage serves
as a foundation for additional bone formation, thereby bridging
fracture gaps through endochondral ossification [58]. It has been

Figure 4. Continued.
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previously demonstrated that bFGF promoted migration of MSCs
in vitro [59, 60]. However, the mechanism underlining this obser-
vation is unknown. Among the endogenous osteoprogenitor cells

contributing to healing, cells expressing smooth muscle a–actin
(aSMA1) and osterix (Osx1) have been identified as skeletal pro-
genitors that give rise to osteoblasts [55, 61, 62]. Osx1 cells have

Figure 5. Callus formation and bone strength at days 21 and 35. Mice were treated as described in Figure 2 and sacrificed at days 21 or 35
post-fracture. Callus structure was first measured by microCT, then the femurs were subjected to three point-bending tests for both female
(A–D) and male (E–H) mice. Representative two-dimensional images (A, E) or 3D thickness mappings (B, F) are presented for indicated
groups. Red represents highly mineralized tissue, and green represents less mineralized tissue (B, F). * Significant difference between indi-
cated group by Wilcoxon ranked-sum comparison test. Abbreviations: ADSC, adipose-derived mouse MSCs; bFGF, basic fibroblast growth fac-
tor; PBS, phosphate buffered saline.
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been detected along blood vessels [62], while aSMA1 cells have
been identified as mesenchymal progenitors that colocalize with
newly formed bone [55] and participate in periosteal bone forma-
tion [56]. Exogenous MSC transplantation have been tested in ani-
mal models and human fractures [63]. However, it is not known
whether these transplanted MSCs directly home to fracture sites

and participate in the healing process, or if the MSCs release
growth factors/inflammatory cytokines, thereby indirectly influ-
encing the healing process [64–70]. The role of MSCs as immuno-
modulation agents during injury and tissue repair has been
increasingly recognized in the field to support use of MSCs beyond
simple cell replacement for diseases [71–75]. Indeed, a key

Figure 5. Continued.
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mechanism for MSCs to promote tissue repair is the secretion of
soluble growth factors. This paracrine effect is potentially ampli-
fied when MSCs are engineered to overexpress growth factors,
such as bFGF, PDGF-B, TGF-b1, and VEGF [76]. Overexpression of
both bFGF and PDGF-B in MSCs increased MSC proliferation and
induced a robust increase in osteogenesis. When MSCs overex-
pressed bFGF, we observed increased bFGF expression in MSCs.

Additionally, we observed a twofold increase in bFGF levels in the
concentrated culture supernatant as well as increased VEGF levels,
supporting a paracrine function for ADSCbFGF. In vivo, we observed
some ADSCbFGF homed to the fracture gaps, but only a few cells
were retained in the callus at day 21. These observations suggest
that the ADSCbFGF themselves do not directly produce a significant
amount of new bone formation. However, despite only a few

Figure 6. Effects of ADSCbFGF treatment on chondrogenesis and osteogenesis during fracture healing. Col2-CreERT mice were crossed with
tdTomato-mCherry reporter mice so that Col21 cells and their descendants expressed tdTomato. Cre was activated by IP injection of tamoxi-
fen (3 mg/kg 3 2 days) prior to femoral fracture. Mice were sacrificed at days 7 or 14. Scale bar 100 mm. Abbreviations: ADSC, adipose-
derived mouse MSCs; bFGF, basic fibroblast growth factor; PBS, phosphate buffered saline.
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ADSCbFGF adjacent to the callus, the endogenous bone mineraliza-
tion was significantly improved following ADSCbFGF treatment,
suggesting higher endogenous bone formation despite low exoge-
nous engraftment of ADSCbFGF. Additionally, we observed
ADSCbFGF induced higher levels of other growth factors such as
Hbegf and Gdf2 that were consistent with higher VEGF and PDGF-
BB expression in the callus and increased angiogenesis that is
essential for fracture repair [77–79].

FGF signaling is essential for postnatal chondrocyte prolifera-
tion and skeletal growth [80]. Pretreatment with bFGF during
MSC expansion in vitro was key for the MSCs’ trophic responses
that favored bone regeneration when the cells were applied in
vivo [81]. MSCs, alive or dead, were found to contain high levels
of bFGF that supported neuropoiesis and angiogenesis [82]. There
are two main progenitor cell components for fracture repair: cells
derived from the periosteum and the surrounding soft tissue, or
from the medullary area between fracture gaps [83]. However, it
is difficult to precisely distinguish the contribution of various sour-
ces of progenitors during fracture healing. Our transgenic lineage
tracking attempt in combination with microCT scans and histology
showed that the fracture callus was initially formed from the peri-
osteum, which was consistent with other reports [46, 53, 56, 84,
85]. ADSCbFGF treatment showed a similar degree of bone forma-
tion from the periosteal surface. ADSCbFGF induced the early acti-
vation of collagen 2 at the fractured ends of the cortex which
promoted both chondrogenesis and osteogenesis. There was a
rapid transition from a big, soft callus to union with highly miner-
alized callus from internal ossification which may have significantly
contributed to stabilization of the fracture and improved bone
strength following ADSCbFGF treatment. Some reports suggested
that direct descendants of chondrocytes become osteocytes as
part of endochondral bone formation [86–90]. Our study showed
very few chondrocyte-lineage cells (marked by collagen-2 or
aggrecan) colocalized with osteoblasts (marked by collagen-1).
This finding indicates a minor role for direct differentiation of
chondrocytes to osteoblasts during normal healing or following
ADSCbFGF treatment.

We and others have found that bFGF injections for two weeks
induced profound de novo new bone formation [25, 26]. To
explore the potential application of bFGF as an anabolic treatment
for bone, we used a severely osteopenia rat model at 120 days
post-ovariectomy. The effects of bFGF on trabecular bone architec-
ture, osteoblast activity, and bone strength were compared to
those of hPTH (1-34). We found that treatment of OVX rats with
bFGF or hPTH (1-34) for 6 weeks both increased trabecular bone
mass, but hPTH (1-34) increased trabecular thickness whereas
bFGF increased trabecular number and connectivity [38–40].
Transgenic mice overexpressing bFGF had higher levels of osteo-
blast maturation and vascular invasion during the early fracture
repair period [24]. Previous studies have shown that short-term
bFGF injection induces profound de novo bone formation in
rodents [25, 26]. Basic FGF stimulates blood vessel growth and
has synergetic effects with vascular endothelial growth factor
(VEGF) and platelet-derived growth factor (PDGF) during angio-
genesis, which are important for wound healing [27, 91, 92]. Simi-
lar to BMPs, bFGF peptide is injected directly or loaded in a
scaffold to promote fracture healing [28–31] or for periodontal
regeneration [93–95]. One injection of bFGF recombinant protein
directly at the fracture site increased callus formation and bone
mechanical strength in normal and streptozotocin-diabetic rats
[96]. Although injections with bFGF peptide typically increase

early osteoprogenitor cell proliferation, stimulate bone formation,
and induce larger calluses compared with controls, whether this
treatment improves bone mechanical strength remains to be
determined [22, 32–34]. Moreover, prolonged exposure to protein
mitogens, such as FGFs, is associated with increased risk for can-
cer [35–37] and induces pro-inflammatory responses in vitro [97].
The oncogenic and proinflammatory effects of bFGF were
observed with continuous exposure to bFGF at the dose of 10ng/
mL or greater, which were approximately at least 1,000-fold higher
than the level of bFGF being released from MSCs. Additionally,
systemic bFGF injection also can induce severe anemia and shift
the fate of progenitor cells toward an osteoblast lineage at the
expense of the hematopoietic lineage, thereby limiting systemic
application of this growth factor [38, 39]. However, we found that
one local injection of MSCbFGF resulted in short-term release of
bFGF and other growth factors, such as VEGF, that augmented
angiogenesis, improved bone apposition and expedited the recov-
ery of bone strength, which might serve as an alternative treat-
ment option for fracture repair.

Although we used MSCs engineered to express bFGF for
fracture healing in this study, it is important to note that MSCs
engineered to express other growth factors, such as IGF-1,
BMPs or VEGF, have also exhibited beneficial effects on bone
regeneration [41–43]. We elected to focus on bFGF since MSCs
overexpressing bFGF only mildly affects adipogenesis, which
was markedly inhibited by MSCs overexpressing PDGF-B. Over-
expression of TGF-b1 in MSCs blocked both osteogenic and adi-
pogenic differentiation. MSCs engineered to overexpress VEGF
induced migration of endothelial cells and did not differ from
controls in osteogenic or adipogenic differentiation, likely
reflecting a lack of VEGF receptor expression on MSCs [76].
Taken together, MSCs overexpressing bFGF are superior to
MSCs expressing other growth factors such as TGF-b1 and
VEGF in terms of osteogenic potential and have the least effect
on adipogenesis or morphological changes in MSCs in vitro.
Appropriate levels of both bFGF and VEGF are critical for osteo-
genesis, and too much bFGF, VEGF, or TGF-b1 resulted in
impaired mineralization [30, 39, 98–101]. Our data suggest
that bFGF secretion from cells was sustained for up to 7 days,
and the transplanted cells were retained in the callus within
bone marrow for up to 21 days. These findings indicate that
the potential therapeutic window for effective MSCbFGF use is
approximately one-two weeks. Since MSCs tend to home to
sites of inflammation [58], we chose intramuscular injection
instead of intravenous injection to avoid cells being trapped in
the lung. However, this approach may increase the risk for
extra-skeletal ossification in the muscle. One other potential
route of application would be intraosseous injection, which
maybe technically more challenging, but may increase cell
retention in the fracture site and reduce the risk for extra-
skeletal ossification. We used MSC in doses of 100,000–
3,000,000 cells and conclude that there was no dose depend-
ent effects of cell numbers engrafting to callus. Therefore,
there was no dose dependent effect for increasing cell num-
bers in this model. This finding are similar to the results of a
clinical study in which recombinant human bFGF was used to
treated tibia-fractures in 70 human subjects. There was no dif-
ference in fracture union by radiologic assessments between
the high (2.4 mg) and low (0.8 mg) doses, both of which were
better treatments compared to placebo [30]. Nevertheless, the
optimal dose for ADSCbFGF, the time of initial treatment,
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duration of treatment, and delivery methods require further
investigation.

Sex significantly affected the healing process [102–106]. MSCs
derived from bone marrow obtained from young male mice have
higher doubling times than that of their aged-matched female-
derived counterparts [105]. Muscle-derived stem cells (MDSCs)
obtained from male donors displayed more osteogenic and chon-
drogenic potential than those obtained from female donors [107,
108]. Sex also affected the regenerative capacity of MSCs [102,
104]. We found that MSCs derived from male mice had higher
osteogenic potential [51] and that male mice generally formed
bigger callus than the aged-matched females (Fig. 5) [46]. How-
ever, despite the intrinsic sex differences in fracture repair, effects
of MSCbFGF on remodeling of the soft callus into mineralized callus
and on bone strength were sex-independent.

CONCLUSION

There were multiple beneficial effects for use of ADSCbFGF for
fracture repair: first, as a direct MSCs supplement; secondly,
ADSCbFGF stimulated trophic factors such as bFGF, VEGF, and
PDGF that stimulate angiogenesis, osteoblast differentiation,
and bone formation at the fracture site; and thirdly, ADSCbFGF

induced a rapid cartilage turnover through endochondral ossifi-
cation and enhances bone strength. Taken together, ADSCbFGF

may serve as a potential cell-based treatment for fracture
repair as it can provide an environment rich in stem cells,

growth factors, and bone matrix proteins over a short time
period, which can promote bone regeneration.
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